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Abstract
Biological diversity is a key concept in the life sciences and plays a fundamental role in 
many ecological and evolutionary processes. Although biodiversity is inherently a hier-
archical concept covering different levels of organization (genes, population, species, 
ecological communities and ecosystems), a diversity index that behaves consistently 
across these different levels has so far been lacking, hindering the development of truly 
integrative biodiversity studies. To fill this important knowledge gap, we present a unify-
ing framework for the measurement of biodiversity across hierarchical levels of organi-
zation. Our weighted, information-based decomposition framework is based on a Hill 
number of order q = 1, which weights all elements in proportion to their frequency and 
leads to diversity measures based on Shannon’s entropy. We investigated the numerical 
behaviour of our approach with simulations and showed that it can accurately describe 
complex spatial hierarchical structures. To demonstrate the intuitive and straightfor-
ward interpretation of our diversity measures in terms of effective number of compo-
nents (alleles, species, etc.), we applied the framework to a real data set on coral reef 
biodiversity. We expect our framework will have multiple applications covering the 
fields of conservation biology, community genetics and eco-evolutionary dynamics.
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1  | INTRODUCTION

Biological diversity is a foundational concept in the life sciences and 
critical to strategies for ecological conservation. However, for many 
decades, biodiversity has been treated in a piecemeal manner with 
ecologists focusing on species diversity (but more recently also on 
trait and phylogenetic diversity) and population geneticists focusing 
on genetic diversity. This dichotomy has led to large differences in the 
type of diversity indices that have been used to measure species, trait, 
phylogenetic and genetic diversity. Ecologists were initially focused on 
empirical developments and generated a very large number of species 
diversity indices that strongly differ in their numerical behaviour (Jost, 
2006) and estimation properties (Bunge, Willis, & Walsh, 2014). On 
the other hand, population genetics was initially dominated by theo-
retical developments and mathematical models focused on a specific 
set of parameters that described genetic diversity within and among 
populations, which led to the development of a restricted set of ge-
netic diversity indices. Thus, although biodiversity is inherently a hi-
erarchical concept covering different levels of organization (genetic, 
population, species, ecological communities and ecosystems), the lack 
of diversity indices that behave consistently across these different 
levels has precluded the development of truly integrative biodiversity 
studies.

Recently, motivated by this lack of common measures for biodi-
versity at different levels of biological organization, population genet-
icists have carried out methodological developments that extend the 
use of popular species diversity indices to the measurement genetic 
diversity at different levels of spatial subdivision [e.g., Shannon’s and 
Simpson’s indices (Sherwin, Jabot, Rush, & Rossetto, 2006; Smouse, 
Whitehead, & Peakall, 2015)]. However, simply adapting species di-
versity measures is not sufficient for two reasons. First, there is much 
controversy over how to quantify abundance-based species diversity 
in a community (Mendes, Evangelista, Thomaz, Agostinho, & Gomes, 
2008). Second, there has been little agreement on how to partition di-
versity into its spatial components (Ellison, 2010). A promising solution 
for a unified measure of genetic diversity centres on Hill numbers (Hill, 
1973). Indeed, a consensus is emerging on the use of Hill numbers as 
a unifying concept to define measures of various types of diversity in-
cluding species, phylogenetic and functional diversities (Chao, Chiu, & 
Jost, 2014). Importantly, Hill numbers follow the replication principle, 
ensuring that diversity measures are linear in relation to group pool-
ing. As such, they can be used to develop proper partition schemes 
across spatial scales or other hierarchical structures such as popula-
tions within metapopulations, species within phylogenies, communi-
ties within ecosystems and to pool information across different levels 
in a hierarchy.

The purpose of this study was to present a unifying framework 
for the measurement of biodiversity across hierarchical levels of or-
ganization, from local population to ecosystem levels. We expect that 
this new framework will be a useful tool for conservation biologists 
and will also facilitate the development of the fields of community ge-
netics (Agrawal, 2003) and eco-evolutionary dynamics (Hendry, 2013). 
This new framework may also facilitate bridging community ecology 

processes (selection among species, drift, dispersal and speciation) and 
the processes emphasized by population genetics theory (selection 
within species, drift, gene flow and mutation) as explored by Vellend 
et al. (2014). The paper starts by outlining historical developments on 
the formulation and use of biodiversity measures in the fields of ecol-
ogy and population genetics (Section 2). We then provide an overview 
of the use of Hill numbers in ecology and their relationship with popu-
lation genetic parameters such as Ne (Section 3). Section 4 presents a 
weighted information-based decomposition framework that provides 
measures of both genetic and species diversity at all hierarchical levels 
of spatial subdivision, from populations to ecosystems. This is followed 
by the description of software that implements the approach (Section 
5). Section 6 explores patterns of species and genetic diversity under 
different spatial subdivision models using simulated data with known 
diversity hierarchical structures. Section 7 shows an application to a 
real data set on coral reef biodiversity (Selkoe et al., 2016). We close 
with a discussion of the advantages and limitations of our approach 
and its applications in the fields of conservation biology, community 
genetics and eco-evolutionary dynamics.

2  | HISTORICAL DEVELOPMENTS

Arguably, the ultimate reason for methodological divergence in diver-
sity indices used by population geneticists and community ecologists 
resides in the very different contexts that lead to the emergence of 
these two disciplines. Ecologists were interested in understanding the 
processes that determine the structure and composition of communi-
ties and could directly measure the community traits (number of spe-
cies and their abundances) needed to compare different communities. 
This relatively easy access to real data and an initially limited interest 
in mechanistic models fostered the development of a large number of 
diversity measures to explore species distributional data (Magurran, 
2004) and eventually made the quantification of abundance-based 
species diversity, one of the most controversial issues in ecology. 
Population genetics, on the other hand, arose in response to a need 
to reconcile two opposing views of evolution that hinged on the type 
of diversity upon which natural selection acted. Darwin proposed that 
it was small continuous variation while Galton believed that natural 
selection acted upon large discontinuous variation (Provine, 1971). 
Variation in this case was an abstract concept and could not be di-
rectly measured, which motivated the development of a vast body of 
theory centred around mathematical models describing the behaviour 
of a restricted set of diversity measures (Provine, 1971).

Although ecologists and population geneticists use very different 
approaches to measure diversity, they are both interested in describ-
ing spatial patterns by decomposing total diversity into within- and 
among-community/population components. But here again, meth-
odological developments differ greatly between the two disciplines. 
Ecologists engaged in intense debates on the choice of partitioning 
schemes (Jost, 2007) while population geneticists remained largely 
faithful to the use of so-called fixation indices proposed by Wright 
(1951). Nevertheless, the recently established fields of molecular 
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ecology, community genetics and eco-evolutionary dynamics are help-
ing to foster a convergence between the methods used to measure 
species and genetic diversity. Indeed, in the last decade, population 
geneticists have begun to extend the use of popular species diversity 
metrics to the measurement of genetic diversity by deriving mathe-
matical expressions linking them with evolutionary parameters such 
as effective population size and mutation and migration rates (Chao 
et al., 2015; Sherwin, 2010; Sherwin et al., 2006; Smouse et al., 2015).

Regardless of this very recent methodological convergence, ecolo-
gists and population geneticists face the same challenges when trying 
to characterize how diversity components (alpha, beta) are structured 
geographically. These problems have been described in great detail in 
the literature (e.g., see Jost, 2007, 2010), so here we will only give 
a very brief summary. The first problem is that the commonly used 
within-community and within-population abundance diversity mea-
sures (e.g., Shannon-Wiener index and heterozygosity) are in fact 
entropies, meaning that they quantify the uncertainty in the species 
or allele identity of randomly sampled individuals or alleles, respec-
tively. Importantly, these indices do not scale linearly with an increase 
in diversity and some of them (e.g., heterozygosity) reach an asymp-
tote for large values. The second problem is that the “within-” (alpha) 
and “between-” (beta) components of diversity are not independent. 
Intuitively, if beta depends on alpha, it would be impossible to com-
pare beta diversities across all levels at which alpha diversities differ.

Partitioning components of diversity is central to progress on 
these problems. Ecologists have related the traditional alpha, beta 
and gamma diversity using both additive and multiplicative schemes 
of partitioning. On the other hand, population geneticists have always 
used the multiplicative scheme based on the partitioning of the prob-
ability of identity by descent of pairs of alleles (inbreeding coefficients, 
F). Although there has been some confusion (cf. Jost, 2008; Jost et al., 
2010; Meirmans & Hedrick, 2011), it is easy to demonstrate that all 
estimators of FST, a parameter that quantifies genetic structure, in-
cluding GST (Nei 1973) and θ (Weir & Cockerham, 1984), are based 
on the well-known multiplicative decomposition of Wright’s (1951) 
F-statistics: (1−FIT)= (1−FIS)(1−FST), where all terms are entropy 
measures describing the uncertainty in the identity by descent of pairs 
of alleles, when they are sampled from the whole set of populations 
(metapopulation) (1−FIT), from within the same population (1−FIS), or 
from two different populations (1−FST).

As mentioned earlier, ecologists engaged in intense debates 
on how to partition species diversity but in a recent Ecology forum 
(Ellison, 2010), contributors agreed that a first step towards reach-
ing a consensus was to adopt Hill numbers to measure diversity. 
Discussions among population geneticists are less advanced because 
of their traditional focus on the use of genetic polymorphism data 
to estimate important evolutionary parameters, which requires that 
genetic diversity statistics be effective measures of the causes and 
consequences of genetic differentiation (e.g., Whitlock, 2011). Much 
theoretical work is still needed to demonstrate that diversity measures 
based on information theory do satisfy this requirement. Here, instead, 
we argue that the adoption of Hill numbers in population genetics is 
also a good starting point to reach a consensus on how to partition 

genetic diversity. In what follows, we first introduce Hill numbers and 
then present a weighted information-based decomposition framework 
applicable to both community and population genetics studies.

3  | OVERVIEW OF HILL NUMBERS

There are now many articles describing the application of Hill num-
bers. Here, we follow Jost (2006), who reintroduced their use in 
ecology. As Jost (2006) noted, most diversity indices are in fact en-
tropies that measure the uncertainty in the identity of species (or 
alleles) in a sample. However, true diversity measures should pro-
vide estimates of the number of distinct elements (species or alleles) 
in an aggregate (community or population). To derive such meas-
ures, we first note that diversity indices create equivalence classes 
among aggregates in the sense that all aggregates with the same 
diversity index value can be considered as equivalent. For example, 
all populations with the same heterozygosity value are equivalent 
in terms of this index, even if they have radically different alleles 
frequencies (see Appendix S1 for an example). Moreover, for any 
given heterozygosity, there will be an “ideal” population in which 
all alleles are equally frequent. It is therefore possible to define an 
“effective number of elements” (alleles in this example) as the num-
ber of equally frequent elements in an “ideal aggregate” that has 
the same diversity index value as the “real aggregate.” An example 
of effective number in an ecological context is the effective num-
ber of species introduced by Macarthur (1965) while an equivalent 
concept in population genetics is the effective number of alleles 
(Kimura & Crow, 1964).

Note that the concept of effective population size, Ne, used in pop-
ulation genetics is analogous to that of Hill numbers but is based on a 
rather different concept. More precisely, Ne is defined as the number 
of individuals in an ideal (Wright–Fisher) population that has the same 
magnitude of random genetic drift as the real population being stud-
ied. There are different ways in which we can measure the strength of 
genetic drift, the most common being change in average inbreeding 
coefficient, change in allele frequency variance and rate of loss of het-
erozygosity, and each lead to a different type of effective size. Thus, 
the ideal and the real populations are equivalent in terms of the rate 
of loss of genetic diversity and not in terms of equal representation of 
distinct individuals. Probably the only similarity between Ne and the 
rationale underlying Hill numbers is in the sense that all the individuals 
in the ideal population contribute equally (on average) to the gene pool 
of the next generation.

The application of the above-stated logic to any of the many differ-
ent entropy measures used in ecology and population genetics yields a 
single expression for diversity:

where S denotes the number of species or alleles, pi denotes the rel-
ative abundance or frequency of species or allele i, and the exponent 

(1)qD≡

(

∑

S

i=1
p
q
i

)1∕(1−q)

,
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and superscript q is the order of the diversity and indicates the sen-
sitivity of qD, the numbers equivalent of the diversity measure being 
used, to common and rare elements (Jost, 2006). The diversity of 
order zero (q = 0) is completely insensitive to species or allele fre-
quencies and is known, respectively, as species or allelic richness 
depending on whether it is applied to species or allele frequency 
data. The diversity of order one (q = 1) weights the contribution of 
each species or allele by their frequency without favouring either 
common or rare species/alleles. Although Equation 1 is not defined 
for q = 1, its limit exists (Jost, 2006):

where H is the Shannon entropy. All values of q greater than unity 
disproportionally favour the most common species or allele. For ex-
ample, the Simpson concentration and the Gini–Simpson index, which 
are, respectively, equivalent to expected homozygosity and expected 
heterozygosity when applied to allele frequency data, lead to diver-
sities of order 2 and give the same effective number of species or 
alleles:

It is worth emphasizing that among all these different number 
equivalents or true diversity measures, the diversity of order 1 is key 
because of its ability to weigh elements precisely by their frequency 
without favouring either rare of common elements (Jost, 2006). 
Therefore, we will use this measure to define our new framework for 
diversity decomposition.

4  | WEIGHTED INFORMATION-BASED 
DECOMPOSITION FRAMEWORK (Q  =  1)

Our decomposition framework is focused on the information-based 
diversity measure (Hill number of order q = 1). In what follows, we 
first describe the framework in terms of abundance (species/genetic) 
diversities and then we provide an equivalent formulation in terms of 
phylogenetic diversity. For simplicity, we will use the notation D to 
refer to abundance diversities and PD to refer to phylogenetic diversi-
ties both of order q = 1. Appendix S2 lists all notation and definitions 
of the parameters and variables we used.

4.1 | Formulation in terms of abundance diversity

Here, we develop a framework, applicable to both species (abundance, 
presence–absence, biomass) and genetic data, to estimate alpha, beta 
and gamma diversities (i.e., diversity components) across different lev-
els of a hierarchical spatial structure. In this section, we consider a 
very simple example of an ecosystem subdivided into multiple regions, 
each of which in turn are subdivided into a number of communities 
when considering species data or a number of populations when con-
sidering genetic data. However, our formulation is applicable to any 

number of levels within a spatially hierarchical partitioning scheme 
and their associated number of communities and populations at each 
level (nested scale), such as the example considered in our simulation 
study below (see Figure 1). Indeed, the framework described here 
allows decomposing species and genetic information on an equal 
footing, thus allowing contrasting diversity components across com-
munities and populations. In other words, if genetic and species abun-
dance (or presence–absence) data are available for every population 
and every species, then genetic and species diversity components can 
be contrasted within and among spatial scales as well as across differ-
ent phylogenetic levels. Note that our proposed framework is based 
on diversities of order q = 1, which are less sensitive than diversities 
of higher order to the fact that genetic information is not available for 
all individuals in a population but rather based on subsamples of indi-
viduals within populations. As such, using q = 1 allows one decompos-
ing genetic variation consistently across different spatial subdivision 
levels that may vary in abundance.

The final objective was to decompose the global (ecosystem) diver-
sity into its regional and community/population-level components. We 
do this using the well-known additive property of Shannon entropy 
across hierarchical levels (and thus multiplicative partitioning of diver-
sity) (Batty, 1976; Jost, 2007). Table 1 presents the diversities (number 
equivalents) that need to be estimated at each level of the hierarchy. 
For each level, there will be one value corresponding to species diver-
sity and another corresponding to allelic (genetic) diversity of a par-
ticular species at a given locus (or an average across loci). Figure S1 
provides a schematic representation of the calculation of diversities.

From Table 1, it is apparent that we only need to use Equation 2 
to calculate three diversity indices, namely D(1)

α ,D
(2)
α andDγ. These di-

versity measures are defined in terms of relative abundances of the 
distinct elements (species or alleles) at the respective levels of the hi-
erarchy. In what follows, we first present the framework as applied to 
allele count data and then explain how a simple change in the defini-
tion of a single parameter allows the application of the same frame-
work to species abundance data. We assume that we are considering a 
diploid species (but the scheme can be easily generalized for polyploid 
species) and focus on the diversity of order q = 1, which is based on 
the Shannon entropy (see Equation 1).

Genetic diversity indices are calculated separately for each locus, 
so we focus here on a locus with S alleles. Additionally, we consider an 
ecosystem subdivided into K regions, each having Jk local populations. 
Let Ninjk

 be the number of diploid individuals with n (= 0, 1, 2) copies of 
allele i in population j and region k. Then, the total number of copies 
of allele i in population j and region k is Nijk=

∑2

n=0
nNinjk

, and from this, 
we can derive the total number of alleles in population j and region k as 
N+jk=

∑S

i=1
Nijk, the total number of alleles in region k as N++k=

∑Jk

j=1
N+jk

, and the total number of alleles in the ecosystem as N+++ =
∑K

k=1
N++k

. All allele frequencies can be derived from these allele counts. For 
example, the relative frequency of allele i in any given population j 
within region k is pi|jk = Nijk/N+jk. In the case of region- and ecosystem-
level allele frequencies, we pool over populations within regions and 
over all regions and populations within an ecosystem, respectively. We 
define the weight for population j and region k as wjk = N+jk/N+++; the 

(2)
1D=exp

(

−
∑S

i=1
pi ln pi

)

=exp (H)

(3)
2D=1∕

(

∑S

i=1
p2
i

)

.
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weight for region k thus becomes w+k=
∑Jk

j=1
wjk=N++k∕N+++. Table 2 

describes how allele/species relative frequencies at each level are cal-
culated in terms of these weight functions.

Using these frequencies, we can calculate the genetic diversi-
ties at each level of spatial organization. Table 3 presents the for-
mulas for D(1)

α ,D
(2)
α andDγ; all other diversity measures can be derived 

from them (see Table 1). In the case of the ecosystem diversity, this 
amounts to simply replacing pi in Equation 2 by pi|++, the allele fre-
quency at the ecosystem level (see Table 2). To calculate the diver-
sity at the regional level, we first calculate the entropy, H(2)

α,k
, for each 

individual region k and then obtain the weighted average over all 
regions, H(2)

α . Finally, we calculate the exponent of the region-level 
entropy to obtain D(2)

α , the alpha diversity at the regional level. We 
proceed in a similar fashion to obtain D(1)

α , the diversity at the pop-
ulation level but in this case, we need to average over regions and 
populations within regions.

The calculation of the equivalent diversities based on species 
count data can be carried out using the exact same procedure de-
scribed above but in this case, Nijk represents the number of individ-
uals of species i in population j and region k. All formulas for gamma, 

alpha and beta, along with the differentiation measures, at each level 
are given in Table 3. The formulas can be directly generalized to any 
arbitrary number of levels (see Section 5).

4.2 | Formulation in terms of phylogenetic diversity

We first present an overview of phylogenetic diversity measures ap-
plied to a single nonhierarchical case, henceforth referred to as single 
aggregate for brevity, and then extend it to consider a hierarchically 
structured system.

4.2.1 | Phylogenetic diversity measures in a 
single aggregate

To formulate phylogenetic diversity in a single aggregate, we assume 
that all species or alleles in an aggregate are connected by a rooted ul-
trametric or nonultrametric phylogenetic tree, with all species/alleles 
as tip nodes. All phylogenetic diversity measures discussed below are 
computed from a given fixed tree base or a time reference point that 
is ancestral to all species/alleles in the aggregate. A convenient time 

F IGURE  1 The spatial representation 
of 32 populations organized into a spatial 
hierarchy based on three scale levels: 
subregions (eight populations each), regions 
(16 populations each) and the ecosystem 
(all 32 populations). The dendrogram 
(upper panel—hierarchical representation 
of levels) represents the spatial relationship 
(i.e., geographic distance) in which 
each tip represents a population found 
in a particular site (lower panel). The 
cartographic representation (lower panel) 
represents the spatial distribution of these 
same populations along a geographic 
coordinate system
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reference point is the age of the root of the phylogenetic tree spanned 
by all elements. Assume that there are B branch segments in the tree, 
and thus, there are B corresponding nodes, B ≥ S. The set of species/
alleles is expanded to include also the internal nodes as well as the ter-
minal nodes representing species/alleles, which will then be the first S 
elements (see Figure S2).

Let Li denote the length of branch i in the tree, i = 1, 2, …, B. We 
first expand the set of relative abundances of elements, (p1,p2,⋯ ,pS) 
(see Equation 1), to a larger set {ai,i=1,2,⋯ ,B} by defining ai as the 
total relative abundance of the elements descended from the ith 
node/branch, i = 1, 2, …, B. In phylogenetic diversity, an important pa-
rameter is the mean branch length ̄T, the abundance-weighted mean of 
the distances from the tree base to each of the terminal branch tips, 
that is, ̄T=

∑B

i=1
Liai. For an ultrametric tree, the mean branch length 

is simply reduced to the tree depth T; see Figure 1 in Chao, Chiu, and 
Jost (2010) for an example. For simplicity, our following formulation 
of phylogenetic diversity is based on ultrametric trees. The extension 
to nonultrametric trees is straightforward (via replacing T by ̄T in all 
formulas).

Chao et al. (2010, 2014) generalized Hill numbers to a class of phy-
logenetic diversity of order q, qPD, derived as

This measure quantifies the effective total branch length 
during the time interval from T years ago to the present. If q = 0, 
then 0PD=

∑B

i=1
Li, which is the well-known Faith’s PD, the sum of 

the branch lengths of a phylogenetic tree connecting all species. 
However, this measure does not consider species abundances. 
Rao’s quadratic entropy Q (Rao & Nayak, 1985) is a widely used 
measure which takes into account both phylogeny and species 
abundances. This measure is a generalization of the Gini–Simpson 
index and quantifies the average phylogenetic distance between 

any two individuals randomly selected from the assemblage. Chao 
et al. (2010) showed that the qPD measure of order q = 2 is a sim-
ple transformation of quadratic entropy, that is, 2PD=T∕(1−Q∕T). 
Again, here we focus on qPD measure of order q = 1, which can be 
expressed as a function of the phylogenetic entropy (Allen, Kon, & 
Bar-Yam, 2009):

Here, I denotes the phylogenetic entropy,

which is a generalization of Shannon’s entropy that incorporates phy-
logenetic distances among elements. Note that when there are only 
tip nodes and all branches have unit length, then we have T = 1 and 
qPD reduces to Hill number of order q (in Equation 1).

4.2.2 | Phylogenetic diversity decomposition in a 
multiple-level hierarchically structured system

The single-aggregate formulation can be extended to consider a 
hierarchical spatially structured system. For the sake of simplic-
ity, we consider three levels (ecosystem, region and community/
population) as we did for the species/allelic diversity decomposi-
tion. Assume that there are S elements in the ecosystem. For the 
rooted phylogenetic tree spanned by all S elements in the ecosys-
tem, we define root (or a time reference point), number of nodes/
branches B and branch length Li in a similar manner as those in a 
single aggregate.

For the tip nodes, as in the framework of species and allelic di-
versity (in Table 2), define, pi|jk, pi|+k and pi|++, i = 1, 2, …, S as the ith 
species or allele relative frequencies at the population, regional and 
ecosystem level, respectively. To expand these relative frequencies 
to the branch set, we define ai|jk, i = 1, 2, …, B, as the summed rela-
tive abundance of the species/alleles descended from the ith node/
branch in population j and region k, with similar definitions for ai|+k 
and ai|++, i = 1, 2, …, B; see Figure 1 of Chao et al. (2015) for an il-
lustrative example. The decomposition for phylogenetic diversity is 
similar to that for Hill numbers presented in Table 1, except that now 
all measures are replaced by phylogenetic diversity. The correspond-
ing phylogenetic gamma, alpha and beta diversities at each level are 

(4)
qPD=

{

∑B

i=1
Li

(

ai

T

)q}1∕(1−q)

.

(5)
1PD= lim q→1

qPD=exp

[

−
∑B

i=1
Li
ai

T
ln

(

ai

T

)]

≡T exp (I∕T).

(6)I=−
∑B

i=1
Liai ln ai,

TABLE  1 Various diversities in a hierarchically structured system and their decomposition based on diversity measure D = 1D (Hill number of 
order q = 1 in Equation 2); for phylogenetic diversity decomposition, replace D with PD = 1PD (phylogenetic diversity measure of order q = 1 in 
Equation 5); see Table 3 for all formulas for D and PD. The superscripts (1) and (2) denote the hierarchical level of focus

Hierarchical level

Diversity

DecompositionWithin Between Total

3: Ecosystem − − Dγ Dγ =D
(1)
α D

(1)

β
D
(2)

β

2: Region D
(2)
α D

(2)

β
=D

(2)
γ ∕D

(2)
α D

(2)
γ =Dγ D

γ
=D

(2)
α D

(2)

β

1: Community or population D
(1)
α D

(1)
β

=D
(1)
γ ∕D

(1)
α D

(1)
γ =D

(2)
α D

(2)
α = D

(1)
α D

(1)
β

TABLE  2 Calculation of allele/species relative frequencies at the 
different levels of the hierarchical structure

Hierarchical level Species/allele relative frequency

Population pi�jk=Nijk∕N+jk=Nijk∕
∑S

i=1
Nijk

Region pi�+k= Ni+k∕N++k=
∑Jk

j=1
(wjk∕w+k)pi�jk

Ecosystem pi�++ = Ni++∕N+++ =
∑K

k=1

∑Jk

j=1
wjkpi�jk
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given in Table 3, along with the corresponding differentiation mea-
sures. Appendix S3 presents all mathematical derivations and dis-
cusses the desirable monotonicity and “true dissimilarity” properties 
that our proposed differentiation measures possess.

5  | IMPLEMENTATION OF THE 
FRAMEWORK BY MEANS OF AN R PACKAGE

The framework described above has been implemented in the R func-
tion iDIP (information-based Diversity Partitioning), which is provided 
as Data S1. We also provide a short introduction with a simple exam-
ple data set to explain how to obtain numerical results equivalent to 
those provided in tables 4 and 5 below for the Hawaiian archipelago 
example data set.

The R function iDIP requires two input matrices:

1.	 Abundance data: specifying species/alleles (rows) raw or relative 
abundances for each population/community (columns).

2.	 Structure matrix: describing the hierarchical structure of spatial 
subdivision; see a simple example given in Data S1. There is no limit 
to the number of spatial subdivisions.

The output includes (i) gamma (or total) diversity, alpha and beta 
diversity for each level, (ii) proportion of total beta information (among 
aggregates) found at each level and (iii) mean differentiation (dissimi-
larity) at each level.

We also provide the R function iDIP.phylo, which implements 
an information-based decomposition of phylogenetic diversity and, 
therefore, can take into account the evolutionary history of the spe-
cies being studied. This function requires the two matrices mentioned 
above plus a phylogenetic tree in Newick format. For interested users 
without knowledge of R, we also provide an online version available 
from https://chao.shinyapps.io/iDIP/. This interactive web application 
was developed using Shiny (https://shiny.rstudio.com). The webpage 
contains tabs providing a short introduction describing how to use the 
tool, along with a detailed User’s Guide, which provides proper inter-
pretations of the output through numerical examples.

TABLE  3 Formulas for α,βandγ along with differentiation measures, at each hierarchical level of spatial subdivision for species/allelic 
diversity and phylogenetic diversity. Here, D = 1D (Hill number of order q = 1 in Equation 2), PD = 1PD (phylogenetic diversity of order q = 1 in 
Equation 5), T denotes the depth of an ultrametric tree. H = Shannon entropy (Equation 2), I = phylogenetic entropy (Equation 6)

Hierarchical level Diversity Species/allelic diversity Phylogenetic diversity

Level 3: Ecosystem gamma
Dγ =exp

�

−
S
∑

i=1

pi�++ lnpi�++

�

 
≡exp

(

Hγ

)

PDγ =T×exp

��

−
B
∑

i=1

Liai�++ lnai�++

�

∕T

�

 
≡T×exp

(

Iγ∕T
)

Level 2: Region gamma D
(2)
γ =Dγ PD

(2)

γ
=PDγ

alpha D
(2)
α =exp

(

H
(2)
α

)

PD
(2)

α
=T×exp

(

I
(2)
α ∕T

)

where 
H
(2)
α =

∑

k

w+kH
(2)

α,k

where 
I
(2)
α =

∑

k

w+kI
(2)

α,k

H
(2)

α,k
=−

S
∑

i=1

pi�+k ln pi�+k I
(2)

α,k
=−

B
∑

i=1

Liai�+k ln ai�+k

beta D
(2)

β
=D

(2)
γ ∕D

(2)
α PD

(2)

β
=PD

(2)

γ
∕PD

(2)

α

Level 1: Population 
or 
community

gamma D
(1)
γ =D

(2)
α PD(

1)
γ

=PD
(2)

α

alpha D
(1)
α =exp

(

H
(1)
α

)

PD(
1)
α

=T×exp
(

I
(1)
α ∕T

)

where 
H
(1)
α =

∑

j,k

wjkH
(1)
α,jk

where 
I
(1)
α =

∑

j,k

wjkI
(1)
α,jk

H
(1)
α,jk

=−
S
∑

i=1

pi�jk ln pi�jk I
(1)
α,jk

=−
B
∑

i=1

Liai�jk ln ai�jk

beta D
(1)
β

=D
(1)
γ ∕D

(1)
α PD

(1)
β

=PD(
1)
γ

∕PD(
1)
α

Differentiation among aggregates at each level

Level 2: Among regions  
Δ
(2)

D
=

Hγ−H
(2)
α

−
∑

k w+k lnw+k

Δ
(2)

PD
=

Iγ−I
(2)
α

−T
∑

k w+k lnw+k

Level 1: Population/community within 
region

 
Δ
(1)
D

=
H
(2)
α −H

(1)
α

−
∑

j,k wjk ln(wjk∕w+k)
Δ
(1)
PD

=
I
(2)
α −I

(1)
α

−T
∑

j,k wjk ln(wjk∕w+k)

F IGURE  2 Heatmaps of allele frequency correlations between pairs of populations for different δ values. Delta values control the strength of 
the spatial genetic structure among populations with low δs having the strongest spatial correlation among populations. Each heatmap represents 
the outcome of a single simulation and each dot represents the allele frequency correlation between two populations. Thus, the diagonal 
represents the correlation of a population with itself and is always 1 regardless of the δ value considered in the simulation. Colours indicate range 
of correlation values. As in Figure 1, the dendrograms represent the spatial relationship (i.e., geographic distance) between populations

https://chao.shinyapps.io/iDIP/
https://shiny.rstudio.com
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6  | SIMULATION STUDY TO SHOW THE 
CHARACTERISTICS OF THE FRAMEWORK

Here, we describe a simple simulation study to demonstrate the 
utility and numerical behaviour of the proposed framework. We 
considered an ecosystem composed of 32 populations divided into 
four hierarchical levels (ecosystem, region, subregion, population; 
Figure 1). The number of populations at each level was kept con-
stant across all simulations (i.e., ecosystem with 32 populations, 
regions with 16 populations each and subregions with eight popula-
tions each). Note that here we used a hierarchy with four spatial 
subdivisions instead of three levels as used in the presentation of 
the framework. This decision was based on the fact that we wanted 
to simplify the presentation of calculations (three levels used) and 
in the simulations (four levels used) we wanted to verify the perfor-
mance of the framework in a more in-depth manner.

We explored six scenarios varying in the degree of genetic struc-
turing, from very strong (Figure 2, top left panel) to very weak 
(Figure 2, bottom right panel) and, for each, we generated spatially 
structured genetic data for 10 unlinked bi-allelic loci using an algo-
rithm loosely based on the genetic model of Coop, Witonsky, Di 
Rienzo, and Pritchard (2010). More explicitly, to generate correlated 
allele frequencies across populations for bi-allelic loci, we draw 10 
random vectors of dimension 32 from a multivariate normal distribu-
tion with mean zero and a covariance matrix corresponding to the 
particular genetic structure scenario being considered. To construct 
the covariance matrix, we first assumed that the covariance between 
populations decreased with distance so that the off-diagonal ele-
ments (covariances) for closest geographic neighbours were set to 4, 
for the second nearest neighbours were set to 3 and so on; as such, 
the main diagonal values (variance) were set to 5. By multiplying the 
off-diagonal elements of this variance–covariance matrix by a con-
stant (δ), we manipulated the strength of the spatial genetic struc-
ture from strong (δ = 0.1; Figure 2) to weak (δ = 6; Figure 2). Delta 
values were chosen to demonstrate gradual changes in estimates 
across diversity components. Using this procedure, we generated a 
matrix of random normally distributed N(0,1) deviates ɛil for each 
population i and locus l. The random deviates were transformed into 
allele frequencies constrained between 0 and 1, using the simple 
transform:

where pil is the relative frequency of allele A1 at the lth locus in popu-
lation i and, therefore, qil= (1−pil) is the relative frequency of allele A2. 
Each bi-allelic locus was analysed separately by our framework, and 
estimated values of Dγ,Dα andDβ for each spatial level (see Figure 1) 
were averaged across the 10 loci.

To simulate a realistic distribution of number of individuals 
across populations, we generated random values from a log-normal 

distribution with mean 0 and log of standard deviation 1; these values 
were then multiplied by randomly generated deviates from a Poisson 
distribution with λ = 30, to obtain a wide range of population/commu-
nity sizes. Rounded values (to mimic abundances of individuals) were 
then multiplied by pil and qil to generate allele abundances. Given that 
number of individuals was randomly generated across populations, 
there is no spatial correlation in abundance of individuals across the 
landscape, which means that the genetic spatial patterns were solely 
determined by the variance–covariance matrix used to generate cor-
related allele frequencies across populations. This facilitates interpre-
tation of the simulation results, allowing us to demonstrate that the 
framework can uncover subtle spatial effects associated with popula-
tion connectivity (see below).

For each spatial structure, we generated 100 matrices of allele 
frequencies and each matrix was analysed separately to obtain distri-
butions for Dγ,Dα,Dβ and ΔD. Figure 2 presents heat maps of the cor-
relation in allele frequencies across populations for one simulated data 
set under each δ value and shows that our algorithm can generate a 
wide range of genetic structures comparable to those generated by 
other more complex simulation protocols (e.g., de Villemereuil, Frichot, 
Bazin, Francois, & Gaggiotti, 2014).

Figure 3 shows the distribution of Dα,Dβ and ΔDvalues for the 
three levels of geographic variation below the ecosystem level (i.e., 
Dγ genetic diversity). The results clearly show that our framework de-
tects differences in genetic diversity across different levels of spa-
tial genetic structure. As expected, the effective number of alleles 
(Dα component, top row) increases per region and subregion as the 
spatial structure becomes weaker (i.e., from small to large δ values) 
but remains constant at the population level, as there is no spatial 
structure at this level (i.e., populations are panmictic) so diversity is 
independent of δ.

The Dβ component (middle row) quantifies the effective number of 
aggregates (regions, subregions, populations) at each hierarchical level 
of spatial subdivision. The larger the number of aggregates at a given 
level, the more heterogeneous that level is. Thus, it is also a measure 
of compositional dissimilarity at each level. We use this interpretation 
to describe the results in a more intuitive manner. As expected, as δ 
increases dissimilarity between regions (middle left panel) decreases 
because spatial genetic structure becomes weaker and the composi-
tional dissimilarity among populations within subregions (middle right 
panel) increases because the strong spatial correlation among pop-
ulations within subregions breaks down (Figure 3, centre left panel). 
The compositional dissimilarity between subregions within regions 
(Figure 3, middle centre panel) first increases and then decreases with 
increasing δ. This is due to an “edge effect” associated with the mar-
ginal status of the subregions at the extremes of the species range 
(extreme right and left subregions in Figure 2). As δ increases, the 
composition of the two subregions at the centre of the species range, 
which belong to different regions, changes more rapidly than that of 
the two marginal subregions. Thus, the compositional dissimilarity be-
tween subregions within regions increases. However, as δ continues 
to increase, spatial effects disappear and dissimilarity decreases.

pil=

⎧

⎪

⎨

⎪

⎩

0 if εil<0

εil if 0≤ εil≤1,

1 if εil>1
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The differentiation components ΔD (bottom row) measures the 
mean proportion of nonshared alleles in each aggregate and follows 
the same trends across the strength of the spatial structure (i.e., across 

δ values) as the compositional dissimilarity Dβ. This is expected as we 
kept the genetic variation equal across regions, subregions and pop-
ulations. If we had used a nonstationary spatial covariance matrix 

F IGURE  3 Sampling variation (median, lower and upper quartiles and extreme values) for the three diversity components examined in 
the simulation study (alpha, beta and differentiation; total diversity gamma is reported in the text only) across 100 simulated populations as 
a function of the strength (δ values) of the spatial genetic variation among the three spatial levels considered in this study (i.e., populations, 
subregions and regions)
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in which different δ values would be used among populations, sub-
regions and regions, then the beta and differentiation components 
would follow different trends in relation to the strength in spatial ge-
netic variation.

For the sake of space, we do not show how the total effective num-
ber of alleles in the ecosystem (γ diversity) changes as a function of the 
strength of the spatial genetic structure, but values increase mono-
tonically with δ −Dγ = 1.6 on average across simulations for �=0.1 
up to Dγ =1.9 for δ = 6. In other words, the effective total number of 
alleles increases as genetic structure decreases. In terms of an equi-
librium island model, this means that migration helps increase total 
genetic variability. In terms of a fission model without migration, this 
could be interpreted as a reduced effect of genetic drift as the gene 
tree approaches a star phylogeny (see Slatkin & Hudson, 1991). Note, 
however, that these results depend on the total number of popula-
tions, which is relatively large in our example; under a scenario where 
the total number of populations is small, we could obtain a very differ-
ent result (e.g., migration decreasing total genetic diversity). Our goal 
here was to present a simple simulation so that users can gain a good 
understanding of how these components can be used to interpret 
genetic variation across different spatial scales (here region, subre-
gions and populations). Note that we concentrated on spatial genetic 
structure among populations as a metric, but we could have used the 
same simulation protocol to simulate abundance distributions or trait 
variation among populations across different spatial scales, though 
the results would follow the same patterns as for the ones we found 

here. Moreover, for simplicity, we only considered population variation 
within one species, but multiple species could have been equally con-
sidered including a phylogenetic structure among them.

7  | APPLICATION TO A REAL DATABASE: 
BIODIVERSITY OF THE HAWAIIAN CORAL 
REEF ECOSYSTEM

All the above derivations are based on the assumption that we know 
the population abundances and allele frequencies, which is never 
true. Instead, estimations are based on allele count samples and spe-
cies abundance estimations. Usually, these estimations are obtained 
independently such that the sample size of individuals in a population 
differs from the sample size of individuals for which we have allele 
counts. Here, we present an example of the application of our frame-
work to the Hawaiian coral reef ecosystem using fish species density 
estimates obtained from NOAA cruises (Williams et al., 2015) and 
microsatellite data for two species, a deep-water fish Etelis coruscans 
(Andrews et al., 2014) and a shallow-water fish, Zebrasoma flavescens 
(Eble et al., 2011).

The Hawaiian archipelago (Figure 4) consists of two regions. The 
Main Hawaiian Islands (MHI), which are high volcanic islands with 
many areas subject to heavy anthropogenic perturbations (land-
based pollution, overfishing, habitat destruction and alien species), 
and the Northwestern Hawaiian Islands (NWHI), which are a string 

F IGURE  4 Study domain spanning the Hawaiian Archipelago and Johnston Atoll. Contour lines delineate 1,000 and 2,000 m isobaths. Green 
indicates large landmass
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of uninhabited low islands, atolls, shoals and banks that are primar-
ily only affected by global anthropogenic stressors (climate change, 
ocean acidification and marine debris) (Selkoe et al., 2009). In addi-
tion, the northerly location of the NWHI subjects the reefs there to 
harsher disturbance but higher productivity, and these conditions 
lead to ecological dominance of endemics over nonendemic fishes 
(Friedlander, Brown, Jokiel, Smith, & Rodgers, 2003). The Hawaiian 
archipelago is geographically remote, and its marine fauna is consid-
erably less diverse than that of the tropical West and South Pacific 
(Randall, 1998). The nearest coral reef ecosystem is 800 km south-
west of the MHI at Johnston Atoll, and is the third region consid-
ered in our analysis of the Hawaiian reef ecosystem. Johnston’s reef 
area is comparable in size to that of Maui Island in the MHI, and 
the fish composition of Johnston is regarded as most closely related 
to the Hawaiian fish community compared to other Pacific locations 
(Randall, 1998).

We first present results for species diversity of Hawaiian reef 
fishes, then for genetic diversity of two exemplar species of the fishes 
and, finally, address associations between species and genetic diversi-
ties. Note that we did not consider phylogenetic diversity in this study 
because a phylogeny representing the Hawaiian reef fish community 
is unavailable.

7.1 | Species diversity

Table 4 presents the decomposition of fish species diversity of 
order q = 1. The effective number of species, Dγ, in the Hawaiian ar-
chipelago is 49. In itself, this number is not informative but it would 
indeed be very useful if we wanted to compare the species diversity 
of the Hawaiian archipelago with that of other shallow-water coral 
reef ecosystem, for example, the Great Barrier Reef. Approximately 
10 species equivalents are lost on descending to each lower diver-
sity level in the hierarchy (Region:D(2)

α =37.77, Island:D
(1)
α =27.75). 

Given that there are eight and nine islands, respectively, in MHI and 
NWHI, one can interpret this by saying that, on average, each island 
contains a bit more than one endemic species equivalent. The beta 
diversity D(2)

β
=1.29 represents the number of region equivalents in 

the Hawaiian archipelago while D(1)

β
=1.361 is the average number 

of island equivalents within a region. However, these beta diversi-
ties depend on the actual numbers of regions/populations as well 
as on sizes (weights) of each region/population. Thus, they need to 

be normalized so as to obtain ΔD (see bottom section of Table 3) to 
quantify compositional differentiation. Based on Table 4, the extent 
of this compositional differentiation in terms of the mean propor-
tion of nonshared species is 0.29 among the three regions (MHI, 
NWHI and Johnston) and 0.15 among islands within a region. Thus, 
there is almost twice as much differentiation among regions than 
among islands within a region.

We can gain more insight about dominance and other assemblage 
characteristics by comparing diversity measures of different orders 
(q = 0, 1, 2) at the individual island level (Figure 5a). This is so because 
the contribution of rare alleles/species to diversity decreases as q in-
creases. Species richness (diversity of order q = 0) is much larger than 
those of order q = 1, 2, which indicates that all islands contain sev-
eral rare species. Conversely, diversities of order q = 1 and 2 for Nihoa 
(and to a lesser extent Necker) are very close, indicating that the local 
community is dominated by few species. Indeed, in Nihoa, the relative 
density of one species, Chromis vanderbilti, is 55.1%.

Finally, species diversity is larger in MHI than in NWHI (Figure 6a). 
Possible explanations for this include better sampling effort in the 
MHI and higher average physical complexity of the reef habitat in the 
MHI (Friedlander et al., 2003). Reef complexity and environmental 
conditions may also lead to more evenness in the MHI. For instance, 
the local adaptation of NWHI endemics allows them to numerically 
dominate the fish community, and this skews the species abundance 
distribution to the left, whereas in the MHI, the more typical tropi-
cal conditions may lead to competitive equivalence of many species. 
Although MHI have greater human disturbance than NWHI, each is-
land has some areas of low human impact and this may prevent human 
impact from influencing island-level species diversity.

7.2 | Genetic Diversity

Tables 5 and 6 present the decomposition of genetic diversity for 
Etelis coruscans and Zebrasoma flavescens, respectively. They both 
maintain similar amounts of genetic diversity at the ecosystem level, 
about eight allele equivalents, and in both cases, genetic diversity at 
the regional level is only slightly higher than that maintained at the 
island level (less than one allele equivalent higher), a pattern that con-
trast with what is observed for species diversity (see above). Finally, 
both species exhibit similar patterns of genetic structuring, with dif-
ferentiation between regions being less than half that observed 

TABLE  4 Decomposition of fish species diversity of order q = 1 and differentiation measures for the Hawaiian coral reef ecosystem

Level Diversity

3: Hawaiian Archipelago Dγ = 48.744

2: Region D
(2)
γ =Dγ ,D

(2)
α =37.773,D

(2)

β
=1.290

1: Island (community) D
(1)
γ =D

(2)
α ,D

(1)
α =27.752,D

(1)
β

=1.361

Differentiation among aggregates at each level

2: Region Δ
(2)

D
=0.290

1: Island (community) Δ
(1)
D

=0.153
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among populations within regions. Note that this pattern contrasts 
with that observed for species diversity, in which differentiation was 
greater between regions than between islands within regions. Note 
also that, despite the similarities in the partitioning of genetic diver-
sity across spatial scales, genetic differentiation is much stronger in 
E. coruscans than Z. flavescens, a difference that may be explained by 
the fact that the deep-water habitat occupied by the former may have 
lower water movement than the shallow waters inhabited by the lat-
ter and, therefore, may lead to large differences in larval dispersal po-
tential between the two species.

Overall, allelic diversity of all orders (q = 0, 1, 2) is much less spa-
tially variable than species diversity (Figure 5). This is particularly true 
for Z. flavescens (Figure 5c), whose high larval dispersal potential may 
help maintain similar genetic diversity levels (and low genetic differen-
tiation) across populations.

As it was the case for species diversity, genetic diversity in MHI is 
somewhat higher than that observed in NWHI despite its higher level 
of anthropogenic perturbations (Figure 6b,c).

8  | DISCUSSION

Biodiversity is an inherently hierarchical concept covering several lev-
els of organization and spatial scales. However, until now, we did not 
have a framework for measuring all spatial components of biodiversity 
applicable to both genetic and species diversities. Here, we use an 

information-based measure (Hill number of order q = 1) to decompose 
global genetic and species diversity into their various regional- and 
community/population-level components. The framework is applica-
ble to hierarchical spatially structured scenarios with any number of 
levels (ecosystem, region, subregion, …, community/population). We 
also developed a similar framework for the decomposition of phyloge-
netic diversity across multiple-level hierarchically structured systems. 
To illustrate the usefulness of our framework, we used both simulated 
data with known diversity structure and a real data set stressing the 
importance of the decomposition for various applications including bi-
ological conservation. In what follows, we first discuss several aspects 
of our formulation in terms of species and genetic diversity and then 
briefly address the formulation in terms of phylogenetic diversity.

Hill numbers are parameterized by order q, which determines the 
sensitivity of the diversity measure to common and rare elements (al-
leles or species). Our framework is based on a Hill number of order 
q = 1, which weights all elements in proportion to their frequency 
and leads to diversity measures based on Shannon’s entropy. This is 
a fundamentally important property from a population genetics point 
of view because it contrasts with measures based on heterozygosity, 
which are of order q = 2 and, therefore, give a disproportionate weight 
to common alleles. Indeed, it is well known that heterozygosity and 
related measures are insensitive to changes in the allele frequencies 
of rare alleles (e.g., Allendorf, Luikart, & Aitken, 2012) so they perform 
poorly when used on their own to detect important demographic 
changes in the evolutionary history of populations and species (e.g., 

F IGURE  5 Diversity measures at all sampled islands (communities/populations) expressed in terms of Hill numbers of orders q = 0, 1 and 
2. (a) Fish species diversity of Hawaiian coral reef communities; (b) genetic diversity for Etelis coruscans; (c) genetic diversity for Zebrasoma 
flavescens

(a) species diversity (b) E. coruscans

(c) Z. flabescens
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bottlenecks). That said, it is still very useful to characterize diversity 
of local populations and communities using Hill numbers of order 
q = 0, 1, 2 to obtain a comprehensive description of biodiversity at this 
scale. For example, a diversity of order q = 0 much larger than those 
of order q = 1, 2 indicates that populations/communities contain sev-
eral rare alleles/species so that alleles/species relative frequencies are 
highly uneven. Also, very similar diversities of order q = 1, 2 indicate 
that the population/community is dominated by few alleles/species. 
We exemplify this use with the analysis of the Hawaiian archipelago 
data set (Figure 5). A continuous diversity profile which depicts Hill 

number with respect to the order q ≥ 0 contains all information about 
alleles/species abundance distributions.

As proved by Chao et al. (2015, appendix S6) and stated in 
Appendix S3, information-based differentiation measures, such as 
those we propose here (Table 3), possess two essential monotonicity 
properties that heterozygosity-based differentiation measures lack: (i) 
they never decrease when a new unshared allele is added to a popula-
tion and (ii) they never decrease when some copies of a shared allele 
are replaced by copies of an unshared allele. Chao et al. (2015) provide 
examples showing that the commonly used differentiation measures 
of order q = 2, such as GST and Jost’s D, do not possess any of these 
two properties.

Other uniform analyses of diversity based on Hill numbers 
focus on a two-level hierarchy (community and meta-community) 
and provide measures that could be applied to species abundance 
and allele count data, as well as species distance matrices and 
functional data (e.g., Chiu & Chao, 2014; Kosman, 2014; Scheiner, 
Kosman, Presley, & Willig, 2017a,b). However, ours is the only 
one that presents a framework that can be applied to hierarchi-
cal systems with an arbitrary number of levels and can be used to 
derive proper differentiation measures in the range [0, 1] at each 
level with desirable monotonicity and “true dissimilarity” prop-
erties (Appendix S3). Therefore, our proposed beta diversity of 
order q = 1 at each level is always interpretable and realistic, and 

F IGURE  6 Diagrammatic representation of the hierarchical structure underlying the Hawaiian coral reef database showing observed species/
allelic richness (in parentheses) for the Hawaiian coral fish species. (a) Species richness; (b) allelic richness for Etelis coruscans; (c) allelic richness 
for Zebrasoma flavescens
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TABLE  5 Decomposition of genetic diversity of order q = 1 and 
differentiation measures for Etelis coruscans. Values correspond to 
average over 10 loci

Level Diversity

3: Hawaiian Archipelago Dγ = 8.249

2: Region D
(2)
γ =Dγ ,D

(2)
α =8.083,D

(2)

β
=1.016

1: Island (population) D
(1)
γ =D

(2)
α ,D

(1)
α =7.077,D

(1)
β

=1.117

Differentiation among aggregates at each level

2: Region Δ
(2)

D
=0.023

1: Island (community) Δ
(1)
D

=0.062
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our differentiation measures can be compared among hierarchical 
levels and across different studies. Nevertheless, other existing 
frameworks based on Hill numbers may be extended to make them 
applicable to more complex hierarchical systems by focusing on di-
versities of order q = 1.

Recently, Karlin and Smouse (2017; Appendix S1) derived 
information-based differentiation measures to describe the genetic 
structure of a hierarchically structured population. Their measures 
are also based on Shannon entropy/diversity, but they differ in two 
important aspects from our measures. Firstly, our proposed differ-
entiation measures possess the “true dissimilarity” property (Chao 
et al., 2014; Wolda, 1981) whereas theirs do not. In ecology, the 
property of “true dissimilarity” can be enunciated as follows: If N 
communities each have S equally common species, with exactly A 
species shared by all of them, and with the remaining species in each 
community not shared with any other community, then any sensi-
ble differentiation measure must give 1 − A/S, the true proportion 
of nonshared species in a community. Karlin and Smouse’s (2017) 
measures are useful in quantifying other aspects of differentiation 
among aggregates, but do not measure “true dissimilarity.” Consider a 
simple example: populations I and II each has 10 equally frequent al-
leles, with 4 shared, then intuitively any differentiation measure must 
yield 60%. However, Karlin and Smouse’s measure in this simple case 
yields 31.96%; on the other hand, ours gives the true nonshared pro-
portion of 60%. The second important difference is that, when there 
are only two levels, our information-based differentiation measure 
reduces to the normalized mutual information (Shannon differenti-
ation), whereas theirs does not. Sherwin (2010) indicated that the 
mutual information is linearly related to the chi-square statistic for 
testing allelic differentiation between populations. Thus, our mea-
sures can be linked to the widely used chi-square statistic, whereas 
theirs cannot.

In this paper, all diversity measures (alpha, beta and gamma di-
versities) and differentiation measures are derived conditional on 
knowing true species richness and species abundances. In practice, 
species richness and abundances are unknown; all measures need to 
be estimated from sampling data. When there are undetected spe-
cies or alleles in a sample, the undersampling bias for the measures 
of order q = 2 is limited because they are focused on the dominant 

species or alleles, which would be surely observed in any sample. For 
information-based measures, it is well known that the observed en-
tropy/diversity (i.e., by substituting species sample proportions into 
the entropy/diversity formulas) exhibits negative bias to some extent. 
Nevertheless, the undersampling bias can be largely reduced by novel 
statistical methods proposed by Chao and Jost (2015). In our real data 
analysis, statistical estimation was not applied because the patterns 
based on the observed and estimated values are generally consistent. 
When communities or populations are severely undersampled, sta-
tistical estimation should be applied to reduce undersampling bias. A 
more thorough discussion of the statistical properties of our measures 
will be presented in a separate study. Here, our objective was to in-
troduce the information-based framework and explain how it can be 
applied to real data.

Our simulation study clearly shows that the diversity measures 
derived from our framework can accurately describe complex hierar-
chical structures. For example, our beta diversity Dβ and differentia-
tion ΔD measures can uncover the increase in differentiation between 
marginal and well-connected subregions within a region as spatial cor-
relation across populations (controlled by the parameter δ in our sim-
ulations) diminishes (Figure 3). Indeed, the strength of the hierarchical 
structure varies in a complex way with δ. Structuring within regions 
declines steadily as δ increases but structuring between subregions 
within a region first increases and then decreases as δ increases (see 
Figure 2). Nevertheless, for very large values of δ, hierarchical struc-
turing disappears completely across all levels generating spatial ge-
netic patterns similar to those observed for the island model. A more 
detailed explanation of the mechanisms involved is presented in the 
results section.

The application of our framework to the Hawaiian coral reef data 
allows us to demonstrate the intuitive and straightforward interpreta-
tion of our diversity measures in terms of effective number of compo-
nents. The data sets consist of 10 and 13 microsatellite loci covering 
only a small fraction of the genome of the studied species. However, 
more extensive data sets consisting of dense SNP arrays are quickly 
being produced thanks to the use of next-generation sequencing tech-
niques. Although SNPs are bi-allelic, they can be generated in very 
large numbers covering the whole genome of a species and, therefore, 
they are more representative of the diversity maintained by a species. 
Additionally, the simulation study shows that the analysis of bi-allelic 
data sets using our framework can uncover complex spatial structures. 
The R package we provide will greatly facilitate the application of our 
approach to these new data sets.

Our framework provides a consistent and detailed characteriza-
tion of biodiversity at all levels of organization, which can then be used 
to uncover the mechanisms that explain observed spatial and temporal 
patterns. Although we still have to undertake a very thorough sensi-
tivity analysis of our diversity measures under a wide range of eco-
logical and evolutionary scenarios, the results of our simulation study 
suggest that diversity measures derived from our framework may be 
used as summary statistics in the context of Approximate Bayesian 
Computation methods (Beaumont, Zhang, & Balding, 2002) aimed 
at making inferences about the ecology and demography of natural 

TABLE  6 Decomposition of genetic diversity of order q = 1 and 
differentiation measures for Zebrasoma flavescens. Values 
correspond to averages over 13 loci

Level Diversity

3: Hawaiian Archipelago Dγ = 8.404

2: Region D
(2)
γ =Dγ ,D

(2)
α =8.290,D

(2)

β
=1.012

1: Island (community) D
(1)
γ =D

(2)
α ,D

(1)
α =7.690,D

(1)
β

=1.065

Differentiation among aggregates at each level

2: Region Δ
(2)

D
=0.014

1: Island (community) Δ
(1)
D

=0.033
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populations. For example, our approach provides locus-specific di-
versity measures that could be used to implement genome scan ap-
proaches aimed at detecting genomic regions subject to selection.

We expect our framework to have important applications in the 
domain of community genetics. This field is aimed at understand-
ing the interactions between genetic and species diversity (Agrawal, 
2003). A frequently used tool to achieve this goal is centred around 
the study of species–gene diversity correlations (SGDCs). There are 
now many studies that have assessed the relationship between spe-
cies and genetic diversity (reviewed by Vellend et al., 2014), but they 
have led to contradictory results. In some cases, the correlation is pos-
itive, in others it is negative, and in yet other cases there is no correla-
tion. These differences may be explained by a multitude of factors, 
some of which may have a biological underpinning but one possible 
explanation is that the measurement of genetic and species diversity 
is inconsistent across studies and even within studies. For example, 
some studies have correlated species richness, a measure that does 
not consider abundance, with gene diversity or heterozygosity, which 
are based on the frequency of genetic variants and give more weight 
to common than rare variants. In other cases, studies used consistent 
measures but these were not accurate descriptors of diversity. For ex-
ample, species and allelic richness are consistent measures but they 
ignore an important aspect of diversity, namely the abundance of spe-
cies and allelic variants. Our new framework provides “true diversity” 
measures that are consistent across levels of organization and, there-
fore, they should help improve our understanding of the interactions 
between genetic and species diversities. In this sense, it provides a 
more nuanced assessment of the association between spatial struc-
turing of species and genetic diversity. For example, a first but some-
what limited application of our framework to the Hawaiian archipelago 
data set uncovers a discrepancy between species and genetic diversity 
spatial patterns. The difference in species diversity between regional 
and island levels is much larger (26%) than the difference in genetic 
diversity between these two levels (12.44% for E. coruscans and 7% 
for Z. flavescens). Moreover, in the case of species diversity, differenti-
ation among regions is much stronger than among populations within 
regions, but we observed the exact opposite pattern in the case of 
genetic diversity, genetic differentiation is weaker among regions than 
among islands within regions. This clearly indicates that species and 
genetic diversity spatial patterns are driven by different processes.

In our hierarchical framework and analysis based on Hill number 
of order q = 1, all species (or alleles) are considered to be equally dis-
tinct from each other such that species (allelic) relatedness is not taken 
into account: only species abundances are considered. To incorporate 
evolutionary information among species, we have also extended Chao 
et al. (2010)’s phylogenetic diversity of order q = 1 to measure hierar-
chical diversity structure from genes to ecosystems (Table 3, last col-
umn). Chao et al. (2010)’s measure of order q = 1 reduces to a simple 
transformation of the phylogenetic entropy, which is a generalization 
of Shannon’s entropy that incorporates phylogenetic distances among 
species (Allen et al., 2009). We have also derived the corresponding 
differentiation measures at each level of the hierarchy (bottom sec-
tion of Table 3). Note that a phylogenetic tree encapsulates all the 

information about relationships among all species and individuals or a 
subset of them. Our proposed dendrogram-based phylogenetic diver-
sity measures make use of all such relatedness information.

There are two other important types of diversity that we do not 
directly address in our formulation. These are trait-based functional di-
versity and molecular diversity based on DNA sequence data. In both 
of these cases, data at the population or species level is transformed 
into pairwise distance matrices. However, information contained in 
a distance matrix differs from that provided by a phylogenetic tree. 
Petchey and Gaston (2002) applied a clustering algorithm to the spe-
cies pairwise distance matrix to construct a functional dendrogram 
and then obtain functional diversity measures. An unavoidable issue 
in their approach is how to select a distance metric and a clustering 
algorithm to construct the dendrogram; both distance metrics and 
clustering algorithm may lead to a loss or distortion of species and 
DNA sequence pairwise distance information. Indeed, Mouchet et al. 
(2008) demonstrated that the results obtained using this approach 
are highly dependent on the clustering method being used. Moreover, 
Maire, Grenouillet, Brosse, and Villeger (2015) noted that even the 
best dendrogram is often of very low quality. Thus, we do not neces-
sarily suggest the use of dendrogram-based approaches focused on 
trait and DNA sequence data to generate a biodiversity decomposition 
at different hierarchical scales akin to the one used here for phyloge-
netic structure. An alternative approach to achieve this goal is to use 
distance-based functional diversity measures and several such mea-
sures have been proposed (e.g., Chiu & Chao, 2014; Kosman, 2014; 
Scheiner et al., 2017a,b). However, the development of a hierarchical 
decomposition framework for distance-based diversity measures that 
satisfies all monotonicity and “true dissimilarity” properties is mathe-
matically very complex. Nevertheless, we note that we are currently 
extending our framework to also cover this case.

The application of our framework to molecular data is performed 
under the assumption of the infinite allele mutation model. Thus, it 
cannot make use of the information contained in markers such as mi-
crosatellites and DNA sequences, for which it is possible to calculate 
distances between distinct alleles. We also assume that genetic mark-
ers are independent (i.e., they are in linkage equilibrium), which im-
plies that we cannot use the information provided by the association 
of alleles at different loci. This situation is similar to that of functional 
diversity (see preceding paragraph) and requires the consideration of a 
distance matrix. More precisely, instead of considering allele frequen-
cies, we need to focus on genotypic distances using measures such 
as those proposed by Kosman (1996) and Gregorius et al. (Gregorius, 
Gillet, & Ziehe, 2003). As mentioned before, we are currently extend-
ing our approach to distance-based data so as to obtain a hierarchi-
cal framework applicable to both trait-based functional diversity and 
DNA sequence-based molecular diversity.

An essential requirement in biodiversity research is to be able to 
characterize complex spatial patterns using informative diversity mea-
sures applicable to all levels of organization (from genes to ecosys-
tems); the framework we propose fills this knowledge gap and in doing 
so provides new tools to make inferences about biodiversity processes 
from observed spatial patterns.
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